Simple data validations
Nullity and Uniqueness
Column must not have null values
The indicated column must not have null values in any row.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Examples
Consider the next table:
ID | ANIMAL | AGE |
---|---|---|
1 | DOG | 3 |
2 | CAT | NULL |
3 | COW | 4 |
Column must not have null values
on theANIMAL
column will return Success ✅Column must not have null values
on theAGE
column will return Error ❌
Column values must be null
Column values must be null.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Examples
Consider the next table:
ID | ANIMAL | AGE |
---|---|---|
1 | DOG | NULL |
2 | CAT | NULL |
3 | COW | NULL |
Column values must be null
on theAGE
column will return Success ✅Column values must be null
on theANIMAL
column will return Error ❌
Column values must be unique
Column values must be unique across all rows.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Examples
Consider the next table:
ID | ANIMAL | AGE |
---|---|---|
1 | DOG | 2 |
2 | CAT | 3 |
3 | COW | 3 |
Column values must be unique
on theID
column will return Success ✅Column values must be unique
on theAGE
column will return Error ❌
Set of column values must be unique
Given two or more columns the set of values must be unique across all rows.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column list | Set | Set of comma separated values. Strings should be surrounded by quotes. For example: "column_a","column_b" |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 2 | Joe |
2 | DOG | 2 | Mary |
3 | COW | 3 | Alex |
Set of column values must be unique
on the set"ID","ANIMAL","AGE"
column will return Success ✅Set of column values must be unique
on the set"ANIMAL","AGE"
column will return Error ❌
Column values must be unique in the same row
Values for the given columns must be unique for each row.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column list | Set | Set of comma separated values. Strings should be surrounded by quotes. For example: "column_a","column_b" |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 2 | Joe |
2 | DOG | 2 | Mary |
3 | COW | 3 | Alex |
Column values must be unique in the same row
on the set"ID","ANIMAL"
column will return Success ✅Column values must be unique in the same row
on the set"ID","AGE"
column will return Error ❌
Set of values
Column values must be in set
Every distinct column value must be contained in the given set.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Value set | Array | Set of comma separated values. Strings should be surrounded by quotes. For example: "large","small","medium" |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 2 | Joe |
2 | CAT | 2 | Mary |
3 | COW | 3 | Alex |
Column values must be in set
with the set"DOG","CAT","COW"
on theANIMAL
column will return Success ✅Column values must be in set
with the set"JOE","MARY"
on the columnOWNER
will return Error ❌
Column distinct values must contain set
The given set must be contained in the set of distinct column values.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Value set | Set | Set of comma separated values. Strings should be surrounded by quotes. For example: "large","small","medium" |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 2 | Joe |
2 | CAT | 2 | Mary |
3 | COW | 3 | Alex |
Column distinct values must contain set
with the set"DOG","CAT"
on theANIMAL
column will return Success ✅Column distinct values must contain set
with the set"JOE","PAUL"
on the columnOWNER
will return Error ❌
Column distinct values must be equal to set
Set of distinct column values must be equal to the given set.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Value set | Set | Set of comma separated values. Strings should be surrounded by quotes. For example: "large","small","medium" |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 2 | Joe |
2 | CAT | 2 | Mary |
3 | COW | 3 | Alex |
Column distinct values must be equal to set
with the set"DOG","CAT","COW"
on theANIMAL
column will return Success ✅Column distinct values must be equal to set
with the set"JOE","MARY"
on the columnOWNER
will return Error ❌
Column most common value must be in set
The most common value in the column must be in the given set.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Value set | Set | Set of comma separated values. Strings should be surrounded by quotes. For example: "large","small","medium" |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 2 | Mary |
2 | DOG | 2 | Mary |
3 | COW | 3 | Alex |
Column most common value must be in set
with the set"DOG","CAT"
on theANIMAL
column will return Success ✅Column most common value must be in set
with the set"JOE","PAUL"
on the columnOWNER
will return Error ❌
Values in range
Column maximum value must be in range
The column maximum value must be between a minimum value and a maximum value. This validation is by default inclusive.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Minimum value | Number | Minimum allowed value. |
Exclude minimum value | Boolean | If you check this option the minimum value must be strictly larger than the specified minimum value. |
Maximum value | Number | Maximum allowed value. |
Exclude maximum value | Boolean | If you check this option the maximum value must be strictly smaller than the specified maximum value. |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 1 | Mary |
2 | CAT | 2 | Joe |
3 | COW | 3 | Alex |
Column maximum value must be in range
with a minimum value of 0 and a maximum value of 20 on theAGE
column will return Success ✅Column maximum value must be in range
with a minimum value of 3 (excluding the minimum value) and a maximum value of 20 on theAGE
column will return Error ❌
Column mean value must be in range
Column mean value must be between a minimum value and a maximum value. This validation is by default inclusive.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Minimum value | Number | The minimum value for the column mean. |
Exclude minimum value | Boolean | If you check this option the mean value must be strictly larger than the specified minimum value. |
Maximum value | Number | The maximum value for the column mean. |
Exclude maximum value | Boolean | If you check this option the mean value must be strictly smaller than the specified maximum value. |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 1 | Mary |
2 | CAT | 2 | Joe |
3 | COW | 3 | Alex |
Column mean value must be in range
with a minimum value of 2 and a maximum value of 10 on theAGE
column will return Success ✅Column mean value must be in range
with a minimum value of 1 and a maximum value of 3 (excluding the maximum value) on theAGE
column will return Error ❌
Column minimum value must be in range
Column minimum value must be between a minimum value and a maximum value. This validation is by default inclusive.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Minimum value | Number | Minimum allowed value. |
Exclude minimum value | Boolean | If you check this option the min value must be strictly larger than the specified minimum value. |
Maximum value | Number | Maximum allowed value. |
Exclude maximum value | Boolean | If you check this option the min value must be strictly smaller than the specified maximum value. |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 1 | Mary |
2 | CAT | 2 | Joe |
3 | COW | 3 | Alex |
Column minimum value must be in range
with a minimum value of 0 and a maximum value of 20 on theAGE
column will return Success ✅Column minimum value must be in range
with a minimum value of 1 (excluding the minimum value) and a maximum value of 20 on theAGE
column will return Error ❌
Column proportion of unique values must be in range
Proportion of unique values must be between a minimum value and a maximum value.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Minimum value | Number | The minimum proportion of unique values. (Proportions are on the range 0 to 1) |
Exclude minimum value | Boolean | If you check this option the proportion of unique values must be strictly greater than the specified minimum value. |
Maximum value | Number | The maximum proportion of unique values. (Proportions are on the range 0 to 1) |
Exclude maximum value | Boolean | If you check this option the proportion of unique values must be strictly smaller than the specified maximum value |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 1 | Mary |
2 | CAT | 2 | Joe |
3 | CAT | 3 | Alex |
Column proportion of unique values must be in range
with a minimum value of 0.5 and a maximum value of 0.8 on theANIMAL
column will return Success ✅.Column proportion of unique values must be in range
with a minimum value of 0.8 and a maximum value of 1 on theANIMAL
column will return Error ❌
In this case the ANIMAL
column has 3 total values and 2 unique values so the proportion of unique values will be 0.66.
Column total unique values must be in range
The total number of unique values must be between a minimum value and a maximum value. This validation is by default inclusive.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Minimum value | Number | The minimum number of unique values allowed. |
Maximum value | Number | The maximum number of unique values allowed. |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 1 | Mary |
2 | CAT | 2 | Joe |
3 | COW | 3 | Alex |
Column total unique values must be in range
with a minimum value of 3 and a maximum value of 5 on theANIMAL
column will return Success ✅.Column total unique values must be in range
with a minimum value of 10 and a maximum value of 20 on theANIMAL
column will return Error ❌
Multiple columns
Column A must be greater than column B
Every value in column A must be greater than the value in column B for the same row.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column A | Column | The column A name. |
Column B | Column | The column B name. |
Values can be equal | Boolean | If you check this option, the values in column A can be equal to column B and not strictly greater. |
Examples
Consider the next table:
ID | ANIMAL | ANIMAL_AGE | OWNER | OWNER_AGE |
---|---|---|---|---|
1 | DOG | 1 | Mary | 23 |
2 | CAT | 2 | Joe | 30 |
3 | COW | 3 | Alex | 42 |
Column A must be greater than column B
with column AOWNER_AGE
and column BANIMAL_AGE
column will return Success ✅.Column A must be greater than column B
with column AANIMAL_AGE
and column BOWNER_AGE
column will return Error ❌.
String values
Strings length must be in range
Column values must be strings with length between a minimum value and a maximum value. This validation is by default inclusive.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Minimum value | Number | The minimum value for the string length. |
Maximum value | Number | The maximum value for the string length. |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 1 | Mary |
2 | CAT | 2 | Joe |
3 | COW | 3 | Alex |
Strings length must be in range
with a minimum value of 3 and a maximum value of 15 on theANIMAL
column will return Success ✅.Strings length must be in range
with a minimum value of 5 and a maximum value of 20 on theOWNER
column will return Error ❌
Strings length must be equal to
Column values must be strings with length equal to the given value.
Available for
Connector | Available |
---|---|
Google BigQuery | ✅ |
MySQL | ✅ |
PostgreSQL | ✅ |
Snowflake | ✅ |
Amazon Redshift | ✅ |
Parameters
Name | Type | Description |
---|---|---|
Column | Column | The column name to validate. |
Value | Number | String length value. |
Examples
Consider the next table:
ID | ANIMAL | AGE | OWNER |
---|---|---|---|
1 | DOG | 1 | Mary |
2 | CAT | 2 | Joe |
3 | COW | 3 | Alex |
Strings length must be in range
with a value of 3 on theANIMAL
column will return Success ✅.Strings length must be in range
with a value of 4 on theOWNER
column will return Error ❌